Курсы обучения

Эффективное решение задач предприятия в части инженерных расчетов с помощью продуктов ANSYS невозможно без квалифицированных пользователей данных систем, поэтому процесс базового и специализированного обучения сотрудников предприятия-заказчика неразделим с приобретением и внедрением самих программных средств.

Именно поэтому в ГК «ПЛМ Урал» организован и успешно функционирует учебный центр ANSYS, предлагающий комплекс учебных курсов, проводимых специалистами Группы компаний на русском языке. Курсы ANSYS предназначены для подготовки пользователей различных уровней, от обучения базовым навыкам работы до специализированных модульных программ.

Преимущества прохождения курсов у нас:

  • «ПЛМ Урал» предусматривает возможность разработки индивидуальных курсов обучения, с учетом специфических задач предприятия.
  • Курсы полностью сертифицированы компанией-разработчиком ANSYS, Inc., и по окончании обучения пользователи получают официальные сертификаты.
  • Обучение ANSYS проводится на территории заказчика или может проходить в учебных классах «ПЛМ Урал» в Екатеринбурге.
  • Кроме того «ПЛМ Урал» предоставляет возможность пройти обучение ANSYS дистанционно с получением официального сертификата.

Записаться на курсы

Отзывы

Продолжительность - 1 день.

Курс направлен на общее понимание моделирования аэроакустики, рассматривает основные CFD подходы для решения задач в этой области, их особенности и границы применения.

Курс содержит материал по постобработке результатов, по сопряжению модуля FLUENT с другими акустическими программами.

По ряду моделей предложены несколько практических заданий.

Краткое содержание курса:

  • Введение
  • Вычислительная аэроакустика (CAA)
  • Моделирование акустической аналогии
  • Моделирование широкополосного шума
  • Постпроцессорная обработка акустических результатов
  • Сопряжение FLUENT со специализированными акустическими программами
  • Решаемые задачи акустики.

Примеры:

  • Акустический шум, вызванный течением
  • Широкополосный шум
  • Моделирование аэроакустики для резонатора Гельмгольца с помощью прямого метода (CAA).

Продолжительность - 2 дня.

В курсе представлены возможности динамических сеток, реализованные в программном комплексе ANSYS Fluent. Внимание уделяется таким технологиям, как перестроение, сглаживание, послойная генерация сетки. В курсе рассматривается применение пользовательских функций (UDF) для описания движения сетки, сопряженное моделирование с подключением 6DOF решателя и другие дополнительные возможности.

Краткое содержание курса:

  • Обзор методов динамической сетки
  • Типы динамических зон
  • Послойное перестроение сетки
  • Пружинная деформация сетки
  • Локальное перестроение сетки
  • Сопряженное моделирование с подключением 6DOF (решатель с шестью степенями свободы)
  • Совместное использование пользовательских функции (UDFs) для динамической сетки
  • Дополнительные возможности.

Примеры:

  • Послойное перестроение сетки на геометрических фигурах простейшей формы в 2D и 3D постановке.
  • Двумерное моделирование колебаний металлическое пластины и камеры сгорания ДВС с использованием UDF и модели пружинной деформации.
  • Моделирование шестеренчатого насоса с использованием динамической сетки с сеточным перестроением в 2,5 постановке и использованием метода CutCell.
  • Моделирование героторного насоса
  • Моделирование лопастного насоса.

Продолжительность - 1 день.

В курсе рассматривается применение различных дополнительных функций, создаваемых пользователем на языке C для расширения функционала ANSYS FLUENT.

Такие функции могут применяться для самых различных целей – от создания нестандартных источников и граничных условий до реализации собственных физических моделей.

В минимально необходимом для полноценной работы объеме в курсе рассматривается основы программирования на языке C. Также отдельное внимание уделяется внутренним типам данных Fluent, а также особенностям взаимодействия пользовательских функций и основной программы.

Краткое содержание курса:

  • Введение. Основы программирования, синтаксис и типы данных
  • Компиляция и интерпретация пользовательских функций
  • Применение макросов DEFINE
  • Применение пользовательских переменных
  • Пользовательские функции для параллельных вычислений
  • Применение параметров Workbench совместно с пользовательскими функциями
  • Пользовательские функции для многофазных течений
  • Пользовательские функции для модели дисперсной фазы.

Примеры:

  • Течение в канале с пористой преградой
  • Течение в канале с синусоидальным распределением температуры вдоль стенки
  • Применение нестандартной зависимости вязкости жидкости от температуры
  • Моделирование переноса определенной пользователем скалярной переменной
  • Пользовательские функции для изменения констант в эмпирическом законе сопротивления частиц
  • Применение пользовательских функций для исследования однородности потока
  • Моделирование выпадения осадка в осветлителе с применением пользовательских функций
  • Управление динамической сеткой при помощи пользовательских функций.

Продолжительность - 3 дня.

Курс направлен на овладение базовыми навыками работы в ANSYS CFX. Курс сочетает лекционный материал и решение задач. Рассматривается устройство препроцессора, менеджера решателя, постпроцессора; импорт сеточной модели; определение расчетной области и физической модели; граничные и начальные условия; сеточные интерфейсы; языки СЕL и CCL; нестационарные процессы; пористые среды; добавочные переменные; источники, файл выходных данных.

Краткое содержание курса:

  • Введение в ANSYS Workbench
  • Введение в методологию CFD. Обзор графического интерфейса ANSYS CFX и основные этапы создания проекта
  • Создание расчетной области (домена), граничных условий и источниковых слагаемых
  • Анализ, полученных данных, с помощью ANSYS CFD-Post
  • Настройки решателя и анализ файла выходных данных
  • Сеточные интерфейсы и движущиеся зоны
  • Моделирование теплообмена
  • Моделирование турбулентных течений
  • Моделирование нестационарных процессов
  • Практические рекомендации по моделированию CFD
  • Язык выражений CFX (CEL) и язык команд CFX (CCL)
  • Приложение. Использование макросов, написанных с применением языка программирования Perl, для автоматизации проектов CFX.

Примеры:

  • Течение с теплообменом в смешивающемся Т – образном канале
  • Многокомпонентное течение и пост-обработка
  • Околозвуковое обтекание аэродинамического профиля NACA0012
  • Ступень осевого вентилятора
  • Расчет охлаждения процессора за счет естественной конвекции и излучения
  • Моделирование вихревой дорожки Кармана.

Продолжительность - 3 дня.

Курс предназначен как для пользователей, не имеющих опыта использования ANSYS FLUENT, так и для пользователей, имеющих некоторый опыт и желающих систематизировать свои знания.

Основная цель курса – научить основам работы в программной среде ANSYS FLUENT, сформировать у пользователя опыт решения задач по вычислительной гидродинамике и систематизировать базовые знания в области численного моделирования течения жидкости и газа.

Краткое содержание курса:

  • Введение в методологию CFD. Обзор графического интерфейса ANSYS Fluent и основные этапы создания проекта
  • Сеточные зоны и граничные условия
  • Анализ результатов расчета
  • Настройки решателя
  • Моделирование турбулентных течений
  • Моделирование теплообмена
  • Практические рекомендации по моделированию CFD
  • Моделирование нестационарных течений
  • Приложение. Сложные физические модели: движущиеся зоны и модель динамических сеток
  • Приложение. Сложные физические модели: многофазные течения.

Примеры:

  • Течение c теплообменом в смешивающем Т - образном канале
  • Использование модели дискретной фазы (DPM)
  • Моделирование многокомпонентного течения
  • Обтекание аэродинамического профиля
  • Турбулентное обтекание обратного уступа
  • Охлаждение электронной платы при наличии естественной конвекции и излучения
  • Использование движущихся систем координат и скользящих сеток
  • Опорожнение сосуда с применением метода объема жидкости
  • Вихревая дорожка Кармана.

Продолжительность - 2 дня.

Курс дает возможность изучить инструменты программного модуля Polyflow для решения задач перерабатывающей промышленности по исследованию и оптимизации ряда технологических процессов. Рассматривает уникальную комбинацию возможностей модуля Polyflow: усовершенствованные модели реологии, включающие вязкоупругие свойства; деформацию сетки, контроль свободной поверхности, обнаружение контакта и способ сеточного совмещения; методы обратного проектирования; точную настройку параметров решателя и постобработку.

Краткое содержание курса:

  • Введение в ANSYS Workbench
  • Введение в CFD
  • Введение в ANSYS Polyflow
  • Описание процесса экструзии
  • Нестационарные течения при пневмоформовке
  • Построение адаптивной сетки для пневмоформовки
  • Определение параметров в ANSYS Workbench
  • Постобработка в CFD-Post.

Примеры:

  • Осесимметричное прессование в 2,5 постановке
  • Течение жидкости и сопряженный теплообмен
  • Неизотермическое течение через охлаждаемую заготовку
  • 3D прессование
  • Прессование обратным методом
  • Течение двух несмешивающихся потоков жидкости
  • Моделирование течения двух несмешивающихся потоков жидкости с использованием метода компонентов
  • Термоформовка в 3D постановке
  • Осесимметричная пневмоформовка в 2D постановке
  • Термоформовка с помощью направляющей втулки
  • Пневмоформовка бутылки в 3D постановке.

Продолжительность - 3 дня.

Курс ориентирован на инженеров - проектировщиков электронных систем. Рассматриваются все этапы проведения трехмерного численного анализа распределения потоков воздуха в устройстве, с учетом процессов теплообмена теплопроводностью, конвекцией, излучением.

Краткое содержание курса:

  • Введение
  • Устройство интерфейса и основные этапы создания модели
  • Объекты ANSYS Icepak - зоны воздуха и твердого материала,
  • Построение совпадающих сеток
  • Настройки решателя
  • Обработка результатов в ANSYS Icepak и ANSYS CFD-Post
  • Объекты ANSYS Icepak - зоны заполнения компаундом, радиаторы, чипы
  • Построение не совпадающих сеток
  • Физические аспекты процессов теплообмена и моделирование нестационарных течений
  • Параметризация модели
  • Введение в ANSYS Workbench и ANSYS DM
  • Передача MCAD-модели в ANSYS Icepack с использованием ANSYS DesignModeler
  • Построение сетки (введение, глобальные настройки, неструктурированная гексаэдрическая сетка, сетка с преобладанием гексаэдров)
  • Практические рекомендации
  • Параметризация и оптимизация с использованием ANSYS DesignXplorer.

Примеры:

  • Построение геометрической модели с использованием объектов ANSYS Icepack
  • Создание совпадающей сетки
  • Настройка решателя, запуск расчета и анализ результатов
  • Построение геометрической модели совместно с импортом ECAD-геометрии и использованием объектов ANSYS Icepack
  • Создание несовпадающей сетки для модели с ECAD-геометрией
  • Расчет задачи в нестационарной постановке
  • Параметризация модели
  • Перевод MCAD геометрии в формат для ANSYS Icepak с использованием ANSYS Design Modeler
  • Построение многоуровневой сеточной модели
  • Оптимизация с применением ANSYS DesignXplorer.

Продолжительность - 2 дня.

В курсе рассматриваются методики расчетов многофазных течений (газ + жидкость, твердые частицы + жидкость или газ), модели, учитывающие перенос тепла и массы между фазами, необходимые для решения задач кавитации, испарения, кипения и конденсации, а также химических реакций на границе раздела фаз.

Курс предполагает знания на уровне базового курса по ANSYS CFX.

Краткое содержание курса:

  • Введение в многофазные течения
  • Подходы моделирования многофазных течений
  • Межфазный перенос импульса и тепла
  • Моделирование течений со свободной поверхностью
  • Многофазная среда в постановке Лагранжа
  • Многофазная среда в расширенной лагранжевой постановке
  • Межфазный массоперенос
  • Обзор моделей MUSIG и DQMOM
  • Гранулярные модели ANSYS CFX
  • Фазовый переход в многофазных многокомпонентных течениях
  • Практические рекомендации при моделировании многофазных течений в ANSYS CFX.

Примеры:

  • Течение в барботажной колонне
  • Течение в барботажной колонне с учетом дополнительных эффектов
  • Течение со свободной поверхностью с учетом поверхностного натяжения
  • Применение алгебраической модели скольжения
  • Испарение капель и лагранжева модель частиц
  • Прямоугольная барботажная колонна с учетом прочих сил (Non-Drag Forces) и MUSIG
  • Модель кипения на стенке
  • Кавитация вокруг гидрокрыла
  • Моделирования внезапной разгерметизации секции трубы
  • Межфазный массоперенос для многокомпонентных жидкостей.

Продолжительность - 2 дня.

Курс посвящен вопросам моделирования многофазных течений средствами ANSYS FLUENT. Круг рассматриваемых тем включает задачи в лагранжевой и эйлеровой постановке, задачи со свободной поверхностью, дисперсной фазой (движение пузырьков, капель и твердых частиц), гранулярные течения, а также задачи межфазного тепло- и массообмена.

Краткое содержание курса:

  • Общие вопросы моделирования многофазных течений
  • Метод объема жидкости (VOF)
  • Модель дискретной фазы (DPM) и метод дискретных элементов (DEM)
  • Эйлерова многофазная модель и газожидкостные течения
  • Эйлерова многофазная модель и гранулярные течения
  • Модель смеси.

Примеры:

  • Впрыск чернил через форсунку с применением метода объема жидкости
  • Процесс работы барботажной колонны
  • Процесс дробления и коалесценции пузырьков в барботажной колонне
  • Моделирование процесса псевдоожижения с применением пользовательских функций
  • Моделирование пневмотранспортировки частиц при помощи модели плотной дисперсной фазы
  • Моделирование нестационарного многофазного течения в барботере с применением метода вращающейся системы координат
  • Образование и отрыв водяной пленки при омывании обратного уступа
  • Образование и отрыв водяной пленки при омывании крыла.

Продолжительность - 2 дня.

В курсе рассматриваются основные способы моделирования горения в ANSYS CFX, модели горения заранее смешанных и несмешанных компонентов, в том числе с учетом скорости химической реакции; горение распыленного жидкого и твердого топлива; модели гашения и воспламенения смеси; вопросы переноса тепла излучением; специфические настройки управления решателем.

Курс предполагает знания на уровне базового курса по ANSYS CFX.

Краткое содержание курса:

  • Введение в моделирование горения
  • Модель диссипации вихря (EDM)
  • Модель ламинарного пламени (несмешанные компоненты)
  • Модель скорости горения (частично и полностью смешанные компоненты)
  • Горение капельной жидкости
  • Горение твердого топлива, моделирование выхода оксидов азота
  • Лучистый теплообмен.

Примеры:

  • Использование EDM-модели в CFX
  • Использование LFM и BVM моделей
  • Горение твердого топлива
  • Горение распыленного жидкого топлива
  • Расчет выхода NOx.

Продолжительность - 2 дня.

Курс посвящен вопросам моделирования различных видов горения в ANSYS FLUENT.

В нем рассматриваются модели горения предварительно перемешанных, частично перемешанных и не перемешанных компонентов.

В курс также входит рассмотрение вопросов моделирования химической кинетики, взаимодействия турбулентных пульсаций с химическими реакциями, моделирования распыления жидкого топлива, горения частиц твердого топлива и поверхностных химических реакций.

Курс предполагает наличие у обучаемых знаний на уровне базового курса по ANSYS FLUENT.

Краткое содержание курса:

  • Введение в моделирование течений с химическими превращениями
  • Модели переноса химических компонентов
  • Горение предварительно не перемешанных компонентов
  • Горение предварительно перемешанных и частично перемешанных компонентов
  • Дискретная фаза
  • Поверхностные реакции и образование загрязняющих веществ
  • Некоторые хитрости при моделировании горения
  • Теплообмен излучением.

Примеры:

  • Перенос компонентов и горения газообразного топлива
  • Применение модели горения предварительно не перемешанных компонентов
  • Двумерный расчет камеры сгорания BERL 300 кВт с применением модели Магнуссена
  • Горение предварительно перемешанных компонентов в конической камере с применением модели конечной скорости реакций
  • Моделирование пламени Sandia Flame D с помощью модели переноса плотности вероятности
  • Моделирование реакций в жидкой фазе в закрытом реакторе со сталкивающимися струями с помощью нестационарной модели Laminar Flamelet
  • Моделирование горения с дежурным факелом с помощью нестационарной модели Laminar Flamelet
  • Сложные реакции при горении твердых частиц
  • Двумерный расчет камеры сгорания BERL 300 кВт с применением модели Laminar Flamelet
  • Перенос компонентов без химических реакций
  • Моделирование гетерогенных реакций в гранульном течении в эйлеровой постановке.
  • Испарение капель жидкости в круглом канале
  • Образования NOx при горении с селективной некаталитической нейтрализацией
  • Моделирование горения в камере сгорания жидкостного ракетного двигателя при использовании модели реального газа
  • Моделирование горения частично перемешанных компонентов при помощи модели больших вихрей (LES) и метода утолщения пламени (Thickened Flame).

Продолжительность - 1 день.

Курс посвящен вопросам расчета проточной части роторных машин средствами ANSYS FLUENT.

В программу курса входит рассмотрение таких вопросов, как применение движущихся систем координат, скользящих сеток, моделирование кавитации и трансзвуковых течений, а также вопросов, связанных с обработкой результатов расчета применительно к данному классу задач.

Краткое содержание курса:

  • Вводная лекция
  • Теоретические основы. Составление уравнений в движущихся системах координат
  • Единственная вращающаяся система координат
  • Модель «замороженного» ротора
  • Модель плоскости смешения
  • Модель скользящей сетки
  • Постобработка результатов расчета проточной части.

Примеры:

  • Моделирование течения между вращающимися дисками с применением единственной вращающейся системы координат
  • Моделирование нагнетателя с применением модели «замороженного» ротора
  • Моделирование проточной части осевой машины при помощи плоскости смешения
  • Моделирование проточной части осевой машины при помощи скользящей сетки
  • Работа с результатами расчета проточной части турбомашины
  • Моделирование центробежного насоса с применением единственной вращающейся системы координат
  • Моделирование ветровой турбины при помощи моделей «замороженного» ротора и скользящей сетки
  • Применение неотражающих граничных условий при трансзвуковом обтекании лопатки
  • Работа центробежного насоса в режиме кавитации.

Продолжительность - 2-3 дня.

Курс посвящен вопросам моделирования теплообмена средствами ANSYS FLUENT. В лекционных материалах содержится значительное количество теоретической информации, а также подробно рассмотрены особенности моделирования каждого из механизмов теплообмена – теплопроводности, конвекции и излучения. При этом особое внимание уделяется применению моделей турбулентности для расчета теплообмена в пограничных слоях. Кроме того, в курсе рассматривается методика расчета рекуперативных теплообменных аппаратов методом спаренных ячеек (Dual-Cell).

Краткое содержание курса:

  • Введение в теорию теплообмена
  • Теплопроводность
  • Вынужденная конвекция
  • Естественная конвекция
  • Теплообмен излучением
  • Инсоляция
  • Моделирование теплообменных аппаратов
  • Теплообмен в пористых структурах.

Примеры:

  • Вводный пример. Течение с теплообменом в смешивающем тройнике
  • Теплообмен в периодической постановке
  • Конвективный теплообмен с излучением
  • Моделирование теплообмена в автомобильной фаре с применением модели дискретных ординат
  • Процесс кристаллизации (метод Чохральского)
  • Сопряженный теплообмен
  • Турбулентное течение с теплообменом в компактном теплообменнике
  • Моделирование теплообмена в автомобильной фаре с применением модели дискретных ординат в трехмерной постановке.

Продолжительность - 1 день.

Курс посвящен рассмотрению реализованного в ANSYS CFX набора моделей турбулентности: модели вихревой вязкости, модели напряжений Рейнольдса, методика пристеночных функций, переходная модель и масштабируемые модели. В практические части курса пользователи решают две модельные задачи.

Курс предполагает знания на уровне базового курса по ANSYS CFX.

Краткое содержание курса:

  • Обзор инженерных моделей турбулентности
  • Модели турбулентности RANS в ANSYS CFX
  • Модели вихревой вязкости (Zero Equation, k-e, k-w, BSL, SST)
  • Модели напряжений Рейнольдса (LRR, SSG)
  • Масштабируемые пристеночные функции
  • Автоматический метод переключения пристеночной функции
  • Дополнительные модели турбулентности
  • Модель крупных вихрей (LES)
  • Модель неприсоединенного вихря (DES)
  • Переходная модель (модель ламинарно-турбулентного перехода)
  • Модель адаптируемого масштаба (SAS).

Примеры:

  • Поток через плоский диффузор
  • Поток в циклоне.